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ABSTRACT

We study, in the spirit of Gribov's Reggeon calculus,a particular
non-planar elastic 6-point amplitude which contributes to the helicity
pole timit (s, 1\/[2 - o, s/M2 - o and t fixed) of the single particle
distribution. We find "third double spectral function" effects analogous
to those which appear in 2-2 amplitudes. In particular we find:
(1) nonsense-triple Regge wrong signature fixed poles, (2) the triple
pomeron vertex to be finite at t =0 if the trajectories-slope:.is.non~zero
and its intercept unity, and (3) an amusing cancellation mechanism
between spurious singularities which eliminates them from the 3-3
amplitude. In addition, we conjecture an asymptotic link between the
high-energy Regge limits of ¢3 theory and the high-energy Regge

behavior of dual tree and dual loop amplitudes.
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I. INTRODUCTION

It has been a tradition in particle physics, ranging over many
years, to discuss both the analyticity and high energy properties of
a Feynman graph or some iterative sum of graphs in q53 theory. As
various '"mew' developments appeared--the ¢3 theory was interrogated
One may simply site, for example, the attempts to ''prove':
Mandelstam analyticity [1], Regge behavior [2] and more recently
eikonalization [3}. Certainly the simplicity of the d)% theory, as
compared to the more complex field theories such as quantum electro-
dynamics or the o-model, makes this q53 choice a bit irresistible.

In fact quite recently we [4)} have again appealecil1 to d>3 theory
to investigate a« beautiful new development due to Mueller [5]}, which
relates the single-particle distribution toa well idefined-discontiauity of
an elastic six-point function. In Ref. [4] we restricted oursgelves:to a
particular sum of planar ¢>3 Feynman graphs, to study,in the strong
coupling regime, the helicity pole limit 16} of the single particle
distribution. (See Fig. 1.) Here we shall investigate the same limit,
yet now looking at a non-planar set of gra_phs.’i3 (See Fig. 2.) We
obtain new results such as; the non-vanishing of the triple pomerén vertex

att = 0, ozP

analogous to "third double spectral function' [1] effects appearing in
two-to-two amplitudes and which relate to the spurious singularities

discussed in Ref. [4].
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We have subtitled our paper, "Duality and the Feynman Graph, "
inspite of the fact that none of the graphs considered here are dual, i.e.
they donot have Regge behavior for any channel one canreach via crossing,
nor is the amplitude identically equal to the sum over the resonances of the
amplitude in a given crossed channel. As will be more fully discussed
in a subsequent paper, "Pionization Limit for the Single Particle
Distribution: Duality and the Feynman Graph, II," inaasymptotic sense
there appears to be a fascinating connection between the ¢>3 results and
the dual model. We shall discuss this asymptotic link in Section V.

Before concluding our introductory remarks, we should remind the
reader of a long standing dilemma of the ¢3 model, especially since
one of our central themes will be abstracting from the theory properties
of the dual model. To wit the theory has no vacuum state [7] . Perhaps
in some deep sense the vexing tachyon dilemma of the conventional dual
resonance model is somehow a reflection of the sickness of the ¢>3 theory.
Yet certainly our efforts areultimatelydirectedtoward Nature--and thus

the set of graphs considered here can never literally be taken as a 'truth."

-Hopefully what one can learn by means of abstracting definite character-
istics, may not be too distant from that "truth."

In Section II we define the model, in III we take the helicity pole
limit, in IV we discuss the cancellation of spurious singularities, in V
we exhibit some puzzles and in the Appendix we review briefly the
Veneziano Transform [8,9], which we find quite helpful in obtaining our

asymptotic results,
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II. THE MODEL
Our model is based on the diagram of Fig. 2, where for the
moment we imagine the three black boxes to correspond to ladder
graphs of ¢3 theory. Later in Section V we shall discuss a more
general scheme. We adopt the Regge properties associated with these

graphs, and thus have for the unsignatured ''t""-channel trajectory

amplitudes: X
t
o) - ) ()
= (K'— |.) x :
Rt [ ey E (kz)'v(Frh’k)) ¢ )
Sw W oy f2. 1 a"}
(1.) _ Y_(k'fl)l] °(f| (1) . ) 2 />
Rtl = [ | - (3 ( R/j (171-‘4;—-}; )/‘t
‘S\mﬁ'e(,t/ |
(2.1b )
and that amplitude associated with the zero momentum,
[Crmetopy*] ™
= R- k" - ‘ ' -~ - PR
R\/ ( fv'j p ((/e-z'}) (k-R -+FI”P"‘P2_‘*P2.))A

Si.mr WQV

(2,!@.)

where,

S S R S A

(.

and
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and at the appropriate time we shall go to the elastic limit in which
case all primes on the external momenta may be dropped and E(Az)—»o.
As in Ref.[4] we shall rega@_%i"‘t’ and ., as adjustable parameters.
Since we are also anticipating the helicity pole limi‘c,M2 - s/M2 -
t fixed, Egs. 2.1a, b and c are appropriate approximations.

The 3-3 amplitude, / , 18 given by the equation,

A [ [tk a®” R RTR,

t 1’

| |

X \ - 11 — X i ,”:;;‘”_1
RL"‘*/;Ly‘ k/"'/ug‘ (F}"Y‘L—-kv +/MX1 (1’_’ 'F, < /(le
\ |
X ! 2.
T —_ . ! ‘ ! 4 - T
(k-k’) VA (‘Q"k’ %Pt Pa TP ) . + M z,
| .' (2.2 )
. 4 4 .. :
To facilitate the d 'k d’'k” integrations we make use [4] of a spectral
representation for the integrand based on the following identity,
of it ;<
- (=s) i / o
= T JS -
< Ll T i , s = )
(-1 ¢« <o ) (2.3"

J ) J
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for o e, and . inthe open interval -1 to 0 (later we will analytically

4
continue to the physically interesting region of positive o and a/t)

and obtain the resulting expression,

M o~ P = l
jjﬁék@k jftiT 0(/;" J/MZ?' d/&zlf’

2 g z 2 2 ' ) 2 2 . /
X &"Mx-ﬁ d'w' ‘32 ‘{"mig F[/MX://M)‘LJ” )Vui, /u*?,, }fzf )

N X oy
A ("W\3> (_"""\3%)#

Lﬂ R)*/‘x 1[” e )" ”/“‘73 L (k-k'p) */“za]

i

X . : SISOV —

o> p3 VILE Ty k meumie et )[R f‘ﬂ*&;

, ols
/’Wlézs ) ’

[k oan | Tl b+ Rarn s P 7, ]

(2.4)

The sextuple spectral function p absorbs the free particle propagation

functions and provides for the off-mass shell behavior of the Regge

(1) {2)

residues, P, P , and B.
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As was the case in Ref. [4],we shall see that the superconvergence
properties of p play a central role in obtaining the familiar
o 2a
M Y (s/MZ) ¢ energy dependence of the helicity pole limit.
(s - o, s/M2 - o, t fixed).

Our calculation isnowreduced to computing an equivalent Feynman
graph corresponding to Fig. 3. For simplicity we have assumed that all
external particles are massless. We have checked the calculation
for the massive case and found the external mass effects play no
essential rule for the asymptotic properties discussed here,5
It is to our advantage to compute the graph by means of the Symanzik
rules [10], since they explicitly display the Mandelstam channels

present in the graph. A straight forward yet tedious computation

yields: ‘

. £ . 32
M~ T S( g&m\;@ A,m“az @(@;3 ( Z;rl szo‘j;dz,"
o , ©
. 2
X $(Z (x.:'rg;*i;)—i): c’
¢

| D5 (54w, M54E)

9 ’( . 0(,- 2 Ly
X (M)(B)f (M,’a) (/W\,ga))

"

where the kinematic variables are defined by the relations:

T - i

S=-(ptp) s':-Cplvel)
t - (Fx’?a)l y -t. - (P‘I—P;))
Miz-(Prp-Pa) M2 =~ (p'-ptpe),

. 2
i

8]

"
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and Wher‘é'“Ise is given by the following relation:

= i V , . .' '

-7 2 p B 2 o , - ’t
IS = S . €7 g [‘:'i A—}/‘ . A’L' ? J o [ / (‘/’l:" l‘/Ayz.j e € .~p s, /’ v )‘
© (2.6

with p factorizing as:
_ . C 4y &3 s 2 Y)‘, (3')( o 1)
f— f (/"L%|/bt>[ij F /M‘jd/u‘}z)t F /Ef//u%z .

We note an important symmetry of p which follows trivially from our

graph (see Fig. 3.) in the elastic limit:

% 2 (:) . R} 2 ] vy, .
F L Z”/mi”) =P (ﬂ?i:— e, ) ) f)( (r“ﬁu“x»t)' £ )(f’“' /«‘u},f )

and thus

P

We shall make use of this symmetry inSections IITand IV.

(2.6 )

L

F‘ under the exchange Y, X <->y1,andz —z,

2’ %4 1

D is given® by the equation;

D= 523)‘(5(?/;,‘3[\) +523U}3(ZY)“"

TMS Zs(fz_y“" 7*‘«.*’}3““}1}‘3"){3 %3\3

+ MY OE, MY,

+ ot P){ ¥y i‘}%kz 2, T Z {} + )(‘%_3'{?3 -5 Ya‘j’g(%ﬁzzﬂ +
¥ [ gys (Xa-%i?. +ix "’7‘3‘3;'5""‘){3%3(3*3)]

= C’&%Ya Xy "rr‘m%a 4 + /W\_}_Z;'ZL.
7

{ T . X ) L '{,) )

L= '(2.'70,)



-10- THY-23

and C by the relation:

L= (%) (= iz
2 7-_ \
v o7, (X 1) T
iz L=}
2 2 ' 2 z
al )(\(‘-4?1“\.%2‘)” X\l(,‘;z.“zt*rié‘%\%

(2.7b)

"It is understood that each internal squared mass has implicitly

associated Feynman's -i e.

2
We have found it enormously useful,in both performing m integra-
tions and taking the high energy limit by means of the Veneziano Trans-
form,to re-express Eq.(2.5)interms of the Nambu-Schwinger [11]

representation. We thus obtain

/ ‘ I °° = ~ R % ‘&\O/y - v
~ ks g S g&m?‘z Am\“s Amiz’ <st ("y: ) (/M'ZB> .
o

s

3
X S"‘&WAALJ%;A:%( L"_i‘l L%P{@/C% o

“Lf-i

(.7 )
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Using the relation,
& A - -0 \
J ix X ¢ = p 7 ey
c

(1,:0\)

2
we easily perform the m integrations which yields the equation,

‘ N Tz ,
./% ~ ’-ZCo(JCH) r-(o‘lv+‘)' 'LSI j S H adox dy,'ﬂzé'
vEd
-2 e U A I A
x C - X ls Z o2
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III. THE ASYMPTOTIC LIMIT
We go to asymptopia in two steps: we first take the s, s” = o
2 :
limit and then the MS — o limit. As can be seen wupon inserting

the kinematic relation,
{
Moo= - M 42t (2. 1)
\

into Eq. (2,7a)‘fhe final limit will bé the more subtle since clearly the
coefficient of the Mz term in Eq. (2.11) is not positive definite in the
domain of integration. We proceed to the s, s” infinite limit.

Using the techniques developed in references [ 8.] and [ 9 ],and
sketched in the appendix, we multiple transform / in Eq. (2.11) on s and

s’ obtaining the expression,

[ 2 . |
/(Mth/t‘) 7:5)?5/): rl(ﬂ(f'w) T(dq*’?) - IS
= 2 - o
T, — ;- | T, —odyt=! T +T, 1 —=af, = |
X gz ¢ v :Tl— i)(: d‘_&:dz; 2’.'«3 % 1 \2»3 5 1 23-5 5 ’
b=
o \

X (\(“'H(z*?(s)_cb (Y * 9D +43 ) - C

o s’ 7
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where [ , gs and Lgfs‘; are given by:

= D(s=s'se),
F (2, Ys (%an )C")'

9 QO

S, ,, and
- = -
= ¢ (?—‘5 Xa(g‘&‘\)c )) (,:’;j
L“ s -~ &
with F defined by the equation:
‘ - X
- X \— C , /N
F= e ( > , (3.3 )

We remark that the _& functions are well behaved throughout the

entire range of integration. Moreover,as can be easily seen when their

arguments approach infinity,the Ty and T dependence vanishes from

the integrand in Eq. (3.2). Thus all singularities in T_and T, can
only appear through the first six terms of the integrand of Eq. (3.2).

o~
Anti-transforming _# in Eq.(3.2)and takings, and s to minus infinity

we find the following approximate asymptotic expression, viz,

.//(Mzsjfj‘f’) ~ (J—LT,T./) J.(‘LTS dTg/ ER P, )F("Z&’)'

(23

>4 (-.S) (“S/_)TSO rl(a(‘f'+‘) r(g(v+l)1 IS : ] )

where ¢ is given by,

="
. ‘ . .
3 Es_gi_!«? 7 ,.,@(%‘:-f T+ s —wsév—i
g = [*"f,ﬁdx.:d%;dz, Xq pE ; Z,
L) .
[+
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We remark that the apparent singularities at Ty Tge™ " 1, -2,...

T Ta”

originating from the terms (y1 +y2+y3) S and (x1 +x2 +X3) S willbe precisely

cancelled due tothe superconvergence properties of the spectral function p. The

intergrand ] in each caserespectively will be either independent of the mass

) 2 2 2 2 2 . .
pairs (p_ ,p_ ), (p_ , u_ ) or producepowersof u atthe singular points. As
N T T T

was discussed in Ref. [4], atleastfor ¢3 theory, the required superconvergence

property indeed keeps pace with singularities generated from thetwoterms,
T T .

(y1+y2+y3) S, and (x1 +x2+x3) ® in Eqg. (36). Asimilar argument

applies to potential singularities arising when C —0.

We are thus left with the singularities originating in T and Tor

appearing when x _, Vs and z3 approach zero. We pick up the residues of

3

the leading ones when x3, and y3 -0, to wit:

—Cs = d't when ¥y = 0
‘7,54: a_(’f/ when 43 —>e (B.b)
and obtain (we now set a, T a, . ) the following relation,
. o 4 VY ‘(f
ANt ) e (=57 (8 ) I

where & is defined by the integral:

?: j,x(ﬁ?dxd‘? 'lgTalz; Zy

. ]
L=y =1

ZO(.:(‘“]V' l

o

A g ~ Relg

. ol
X Llxeeay v gad] 07 Hap

o>lo> .

L

P
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and where C and D are given by the equations,

S .
A > ==
YL oa (Tt Do) T
(= tE
. 3
2 2 N (*‘2‘: I
e oot
-+ Xl(v W&& g Z—»-ﬁ :Z"\ ~ :"“: (=
= ¢
&l “&\z’t + pfﬁ-L%%I
and
" G\ + M (%)
D= Mg Z3 (\7(?— J’:x a ATTGESS T
3 : +
4 t \",M“gz*%‘f*/z”‘%[‘)j
L% L¥
- K 2. Y 7,4l kl&f
+ E\ﬁ\"f@* 1 ~ ' ﬁi -

-\
L e =,
e w,g‘fy%, % ;F % b ‘1\ j

b
- < ¢ % , ) ) K 3
~'f’f\_ PR U A T ,

ok

-23

(3:9)

(3.10)

We note that singularities which would appear when the factors ¢

(x, +x,) and (y, +y,) approach zero in Hq. (3.8) are fake, thanks

again to superconvergence.

In turning our attention to the rather subtle limit: Mz -, -

& bit more care is required with respect to our transform technique.
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The two central issues involved are: a) its very existence, and

b) an amusing symmetry of our amplitude which in the elastic limit,
. . . . 2

even signaturizes the amplitude in the A~ channel.

With regard to point (b) we observe that

c(M) - @ W), (=)

2 . . .
This result can be seen by noting that sending Ms into Mlz1 1s equivalent to

J

interchanging Y, <X, and Xy =Yy yet apart from the € functionand the
coefficient of C in Eq.(3.10), the remaining intergrand is invariant under this
transformation. However, thanks to the symmetry of p, Eq. (2.6’),/(\3
and the coefficient of ’c‘:, in Eq. (3.10) remain unchanged if in addition we

interchange Z) 2, Thus the combined transformation

‘é; — )(;
7(, 3 Vél

zl e—?z}

o (2.2)
results in Eq. (3.11).

With respect to point(a) we shall observe that the transform exists

2 2
i i > > < >
in the domain MS 0, X, ¥y XY, and Ms 0, and X, ¥, > %,y

1

We are thus invited to re-express Eq. (3.8) as

(+) (=)
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?H): g S T} dv: du

(AT ¢!

T 4z, e’(i%\) R (3154

V=

S

v - S"' ( T oy g, T et BERIR (2db)

with B denoting,

(ﬁ = X:_y,'_x\%“b)‘ (:/,5’)

and R the integrand of & . We note that due to the above © functions
10
Eq. (3.14a)will have the right hand cut and Eq. (3.44 b) the left.

We further define a symmetrical pair of asymptotic variable by the equation:

Moo= M, -t
and S | (':i:.\é)

f\'ﬁ'—’\ _ %
?ﬂiﬂ\, = Aﬁuﬁ

+ -
and transform separatelyg( )and ?( ); to wit:

- M+ (e
e ) _ ~% () -
¢ (r,t) = n. S b M, & E(M:H)T-f-l)
- - (o9
(e¢m <l ) (3.17a )
-1 = m

f'\_rr_\

/ ~ * - ~ -
g _(Iyt)», e S&MW gz> B(Mi“)ﬁ]”)

- )\'- ( =)

(o <’r)'<| ),
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| ~ 2 2
Upon performing the dMS and deru integration we obtain the

following transformed amplitudes,

~ () 2 E]
M(T,ery= L 1, ‘( j Tdx dy; ]:‘5‘2:. e(gjfﬁr-

——l, — o+ T
x Zzt-»lo({ oy —| [(X“\'Xz)(‘éx*‘};‘)] ‘Z‘
. s

A-Z'Z‘\'t'f ~
RC L2t 5{ D % 3 N
’a (3.‘0“0\.1
and

s

-

~ (="

2 3 _‘
Aoy L L[ (T axdy T eep) g

Z'—O—Z‘{y"’(\l" /

X 23 ' L("‘”‘IH‘Z'*?')]%F/%;

- ey |
A - lv(tt —~

xC "’“‘F{_D_‘%j

C /
(3.19b )
where D is given by the expréssion,
~ 3 = .
D= tf{lxa { Z 2 = oy +
(a ¢!

+E&j!t‘}a%_i%L i i X 14} + 24 (742,%3_5--@L “"2\“&)%}
12 i
A > " 5 . .
- C I;‘;{ﬁ” Y +ﬂ'a""}: T My Z;k‘\)

(2,20 )
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and g is given by the relation,

ot o\ o
L = (-s) (-5 Flset1), (z.21)
ﬁl.nzﬁ’{t

Recalling Eq. (3.37) g
M

2" . .
5 and ‘71\/[2 are both given by the expression
s u

J@;‘g: ‘ﬂ{:‘a = ¥ (23 C—‘ B&D (3;;,«.:))
< 49

We observe that there are important poles in the T variable in both
N+) /\4_
/ and/ ) at:

T

= oiv"zqt_% , M= e, by 2, 0 =9 (3'23>
!

T
when z, > 0 and require no special discussion. However, we will returnto
them shortly to obtain the helicity pole limit. The poles which seem to

appear when, B — 0 at

require a more delicate discussion.
Note that at the tip of the cut in the Nambu-Schwinger parameter
space (x1 SX, TV, Y, T 0).The singularities at T = -n are

cancelled due to the superconvergence properties of the spectral
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function, yet of course, the singularities will remain for finite

d 11
X, X5, y,and y,.

’\/(-_},) .
Before applying the suitable anti-transforms on, ¥ in Eq. (3.17a)

and & ) in Eq. (3.47b), it is useful to rewrite ISIT 6(B)and || 6(-p)

in terms of generalized functions [12] .
|

e (m-"’\)ﬂ 4
=l ecpy = " )y D
(‘ﬂ\__l)ﬁ’ (T + M )

and

7! oy (B ~ B

(:;mg}i. (”E‘+;r‘x)

>
T
=
<
}
T
Nt
i

4 -
where F_n and F L, 2re regular at 7, 77 = -n.

The generalized functions permit a simple evaluation of the residues of

the polesat v, v* = -n in Egs. (3.19a,b). Those at the even negative

integers are zero since apart from the factor 6(n_1)(ﬁ)'

12
function is even  in B, and hence when integrated over f gives

the remaining

Zerao.

- We thus obtain for odrd n:
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Lol
Raw 27 . -
o M (Teem,e) = LT S S TWdye T 4z,
\ | {:’:3 -
S
—%-fv:’u@‘(‘&,“’“‘%‘/v”“i /\-—}‘.”’26‘%}%'%

e
A X_(Xaﬂ\rx‘z‘;é}c\.h«,}%)] Z,

o < s T )
ngjwz MP(E}> . {(\ f

(A =1 )\
and
Mj“ / v - * :
C—C--’Vh)”t} Zg'ls X g \\ 4y ﬂa}é-ﬁg
o {5, by
¥ " ﬁ(l‘fﬁ” e, 4 2 ale oy | A g Ry T
x\_()(\-k)(;\) (\/; "”&f’z.},l %3 -+ 2 ¢ v C
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Egs. (3.26a and b) lead to the following asymptotic results:

ot
B s W +
T~ T, 2 (AM0) s R o (Teem,t )
= m (odd )=
(2.27a )
and
P L M
/tﬂ) ~ ¥ Y:% 2. (Ms)  *Rew g (T'=-m,t )
F M aJ-J )3 4
(2,271 E@)
which we recognize as a string of fixed poles at nonsense wrong
signature points. .Here is our first "third double-spectral-function

effect' as was mentioned in the introduction. Moreover, we note that

2 . cir . +
because Ms is associated with integral powers, “ us3 %(F) and
-3 2
%(F cannot contribute to the 1\/[S or Mi discontinuity, and clearly

not to the asympotic behavior of the inclusive single particle cross
section. Furthermore, as may be easily seen, the sum, /(;)Jr_/];z
is identically zero. Thus the full amplitude has no fixed power behavior.
The fixed poles, nevertheless, make their presence known -as was the
case for the 2-2 amplitudes  -in modifying the structure of the Regge
residue function. This will become evident as we now turnto the singularities

which are generated when Z, vanishes in Egs. (3.419a and b).

1

A -~

Upon evaluating the residue of the leading  singularity generated

when z3-—>0, in Egs. (3.19a and b) , we find the following asymptotic

. N R
behavior for their contribution to ‘//( )and // t }
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(+) . 2 o _1q4t
Ay~ (‘57%(“59% -Fs") (2 o= dy )
SW'.ZTT"(*t
x 1, 1,
(2. 2%8e)
and
- o't Ay g .
%(ﬁ)w (“s?w( > ) (- Mw) M (2elg-on )"
szﬂa(‘t
~ I, 1. (3 25h)
where:
= "(\l-zq{‘t A -2 — Wy
T, - (o [0 desan p 0 Clans
- L=

o o

A i(‘;t %%%)L#Qﬁ»‘%&}} MP&Lt [ﬂ\m{i Z ""{Z;Q:} 11'@'

+[‘3\‘3‘z IL i 2.+ ‘Z_z, 7’;% _]g {2’1 {}LX‘A‘&"AJ(‘?L TP T 3]} C E=-"
- - (3.28})

+ .
We note that in Eq. (3.28a) / (R) will have the right hand M2 cut
- 2
and in Eq. (3.28b),in (R) the left hand M° cut
We can now trivially take e. g. the 1\/[2 discontinuity across the

right hand cut and continue s above the right hand complex s plane cut

and s” below the complex s plane cut and obtain



which is,of course, directly proportional to the single particle

distribution, and is moreover.

the familiar helicity pole limit [ 6].

We observe . that if we decree o, and o to be the pomeron .
; e pomeron

v RO

trajectories, the vanishing of the iriple pomeron vertex at

0, .., the zero obtained previously in Refs. [4,43] will

mno: longer hold due to the . factor ﬁiv

¢ - 1.

g -2a, =
v

have a vanishing result when the exponent a - 2o

o ~2a .
which is singular when

Furthermore, it is amusing to note that we will still

i is a negative even

_|_ -
integer for precisely the same reason that %(F) and /{F> had only

wrong signature fixed poles.

We remark that the potential singularities due to the terms

@ o
[(X1+X2)(y1+y2)] " and C

convergence properties of IS.

2 ~obv

-will be cancelled due to the super-
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Finally, it is appropriate to mention at this stage the external
masses which were taken to zero for reasons of simplicity of presen-
tation. We have seen that the asymptotic limit of the absorptive parts

) -
of both 4///6;; and %’é_) arose from singularies in the 'r

T YL R -

variables when X3s Vg and eventually Z, where taken to zero. One

can easily check that every external mass factor will have either

X or z_. as an overall multiplicative factor, and thus for the

3’ V3 3

helicity pole limit the external mass:factors would eventually vanish

from the final answer.
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IV, THE CANCELILATION OF SPURIOUS POLES
{+) -
As is quite evident from Eqs. (3.28a and b), /%]; and /R)

infact. .appear to have spurious singularities at
Zp{t“d\l :D}wi —"2'.’”‘”‘ (‘_‘“)

Using the relation

Fix YT l-x) = T

Sv T X )
. (+) (-5
we rewrite _# and _# _ as:
R R
i oly ™ 2oy
Dz% $ ol R v
/;;\ ~ (= 8) (- s } ("."Mﬁj ‘ HE
S v S0 oy S it (2agp-wy) T (Vmay v 2 &g )
(4.2a )
and
] “7{“‘&“ B, % M\} -2 M‘t? -
) | )fﬂ’ie (-s") (m) T
M ~ (-3 T 3
R :

I

x 1.1

(4.2h)
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and observe that again due to the symmetry of the amplitude under the

transformation:
- (4.3
B—>-p w2, s )
thereare, inifact, no spurious singularities at Lo=2, 4, -6,..

The physical amplitude is, of course, the sum of Egs. (4.2a) and

(4.2b). However, thanks to the properties of §, and p_ [see Eq. (3.252a

and b)], ~the Spurious singularities cancel upon summation,
This rﬁechanism of cancellation is quite different

from the planar case [4], in whichthere was only a right hand cut

and the spurious singularities werercancelled by means of a compensation-

mechanism. Here, however, both the amplitudes associated with the

right and left hand cuts have spurious poles, and cancellation only

occurs upon summation.
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V. PUZZLES AND COMMENTS

As is well known [ 14, 15] Mi‘cohsisten'cyrbetween an assumed pomeron
dominated constant total cross section [ozp (0) = 1] and the non-vanishing
of the triple pomeron vertex at t = 0 is an impossibility. Thus under
the above assumptions, our final result, Eq. ( 3.29 ), is clearly
incomplete. Certainly the simplest resolution (aside from decreeing
that the unknown spectral function itself has . an overall zero at t = 0)
is to let. the pomeron intercept lie below one by a small amount n .
In this case .1 would be perhaps a quite fumdamental, positive parameter
as is the case in the Schzephrenic Pomeron Model of G. F. Chew and
D. Snyder [16]. Our graph mightrepresentsome smalladditiondliterm
to be considered within their framework.

At present, direct experimental evidence of a deviation
from unity for the pomeron intercept is non-existent. We feel a con-
frontation with this puzzle at this time is not at all an academic exercise.
In fact, quite recently H. D. Abarbanel and M. B. Green [17] have
addressed themselves to this issue by considering effects generated
by inserting a single Regge cut in the vacuum channel (ozv) of the elastic
six-point amplitude. We certainly share with them the attitude that
Regge cuts must play a central role in the resolution of the puzzle
(which for them involved ''proving' that the residue of the nonsense -
wrong signature fixed pole vanishes at t = 0), yet we find their argu-

mentation '+ incomplete. Atissue is the frightening collision of



~29- THY-23

singularities at t = 0, viz., the fixed pole, three pomeron trajectories,
and a three-fold infinity of Regge cuts. It appears to us that a systematic
approach to the disentanglement of these singularities is required. Such
a program has been carried out. recently in a fascinating sequence of
papers by J. B. Bronzan [18] and J. B. Bronzan and C.H. Hui [19], and
earlier,using quite different techniques,by V.N.Gribov [20], and
V.N.Gribovand A.A. Migdal [21] for the elastic 2-2 amplitude. An
investigation in the same spirit might now be appropriate for the elastic
3-3 amplitude.

In Section Il we promised to suggest a somewhat more general
model calculation than the one performed here. We have always had
in mind thé q53 theory, that is to say,the black boxes represented an
iterative sum of ladder graphs, and the spectral function the solution
to the d)3 Bethe-Salpeter equation. Recently, J. Scherk[22] has
discovered that a well defined zero slope limit of the dual resonance
perturbation expansion limits to the Feynman-Dyson expansion of the
¢ 3 theory. 15 Furthermore, he noted that the pomeron singularity
vanishes in the limit. In the dual model the pomeron has an identifiable
mathematical repr esen’rza‘cion?6 related to the experimentally sound [ 23]
Freund-Harari [24] hypothesis. It appears that none of the ¢3
ladders can ever actually represent the pomeron in the sense suggested
by Freund and Harari.

We are thus led to take the black boxes (in the spirit of Gribov) to
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actually represent the pomeron, and consequently are left at this stage

with truly unknown spectral functions " whose superconvergence

properties must be assumed_iﬁ? inorder to.obtain the helicity pole limit

at t = O,ap (0) =1. Moreover, as will be discussed in a subsequent
paper, YPionization Limit for the Single Particle Distribution: Duality
and the Feynman Graph II, ’7 our initial assumption of incorporating the

free propagation functions for the scalar particlés of the ¢>3 graph into

the spectral functionagggéi‘sﬁfcpjsjgg restrictive. Wefeel a.somewhat more
realistic modely"; should include a far richer spectrum of particle
states propagating along the lines labeled X, xz; Yo Yy and Zys By
in the graph of Fig. 3. This appears quite important if we are to
compute other limits of the single particle spectrum, such as for
example, the asymptotic transverse momentum distribution in the
pionization limit.

We conclude with a conjecture,(which in view of the recent work

of J. Scherk [22] might possibly be not too difficult to prove), concerning

an asymptotic link between ¢3 theory and the conventional dual model.

i

We have observed that Regge limits (obtained from sums of ladders)
3
of planar ¢ diagrams calculated in the strong coupling regime have

the form:

QP}&‘&U\V‘“ ™~ R" /g F: X (s.1 )



-31- THY-23

where R symbolizes the Regge asymptotic power, F a known function
which is identical to that obtained from the dual tree model, X the
spectral function, 19(‘1, e. the solution of the Bethe-Salpeter equation),
and j’ indicates either a kind convolution involving F X or indeed,
for some limits there may be no convolution at all, Eor example, in
Ref.[4], F was given by I‘-1 (1 -I;&v_ Zat) s'in"‘“2 (TTOlt). 20, 24

We further conjecture that a fo;rrn similar to Eq. (5.41) holds for

the Regge limits of non-planar ¢3 configurations (such as discussed

here), i.e.

;o[
L ey K f}‘“" X.) [5.2)

ien p

where F7isessentially identical to the residue functionobtained from the Regge
limit of lowest order dualloop or sum of loops | 2,3]22 whichasymptotically
has the same Mandelstam channel as the reduced equivalent d>3 graph

(e.g., Fig. 3) andR “ isthe Regge power associated with the non-pomeron

contribution to the limit. One of the possible lowest order dual loop
diagrams which is applicable here,(there are centainly others), is

given in Fig. 4. We note in passing that this graph has already been
considered in Ref. [ 25] as an important contribution to the fragmentation
limit of the single particle distribution. There we were concerned with
the pomeron component of the graph, and the generalization for the

single particle distribution of the Freund-Harari conjecture.
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We began our paper with remarks concerning the interrogation of
the ¢3 theory with regard to various 'new" developments, which appeared
from time totime, in our gradual attempts toward a fundamental understanding
of that vexing yet beautiful aspect of Nature--the world of hadrons. As
we have seen the link between the qS3 theory and the dual resonance
model is indeed non-trivial. Moreover, the latter model appears to us
to be a far more realistic representation of the experimental facts of the
hadronic world. Hence, in the future we hope that the conventional dual
resonance model will be put, more frequently then is done at present,

to that same important chore--the testing out of new ideas.
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NOTE
It has been pointed out to us that a similar model calculation of
the same non-planar graph, (see Fig. 2. ) using quite different
mathematical methods has been performed by A. H. Mueller and
T. L. Trueman. Their conclusion with regard to the cancellation of
the spurious singularities, and the non-vanishing (vanishing) of the
helicity pole vertex function at: a - 20 =-1, (-2), -3, (-4),...,

are identical to ours.
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APPENDIX
In 1969 G. Veneziano proposed [8] the Beta function transform.
to study the J-plane analiticity structure of the 4-point dual amplitude,
(at that time the dual n-point functions were in their infancy). More
recently we [9] have generalized the transform in a rather straight-
forward manner--into a multiple transform, and have found that the
multiple transform of the m -point dual amplitude, is again an n-point

dual amplitudewith.-well defined shifts in the trajectory intercepts

associated with the transform variables and consequently permitting a

rather simple evaluation of[Regge asymptotic limits.

It had not occurred to us that an object so closely indentified with
the dual model should prove useful in other areas, -such as taking the
asymptotic limit of Feynman graphs, Yet,as we hope to have convinced
the reader,-it is indeed useful -and in some respects perhaps
one. of ~the simplest-. transform devices to make use of in taking-
rather involved asymptotic limits.

Clearlythe transform, which we shall define below, needs a far more
thordﬁgh mathematical investigation than exists to date. Moreover,
since after all its kernal is basically a kind of analytic continuation of
the reciprocal of a binomial coefficient,we feel that the transform may
find use in areas- far afield from dual models, Feynman diagrams,
inclusive amplitutes, etc. Below we shall define the transform, and

anti-transform, -and as a trivial example of its applicability apply it
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to find the asymptotic limit (s - =, t fixed) of the ¢.3 box diagram. Finally,
we shall define the multiple transform.

The transformed function V is given by [8,27];

—MEL ,
~ " . %
\/(-C)X):;'-ﬁ"é &'4;5\/(.5/)() E(t'ft‘/s"”))
-')’L-‘goc b

§o<n<a) ) (A1)
and we anti-transform \7’ (t, x) by:
“é +('=@ ]

Vs, X)) = ;‘}r‘ Sd.":‘ :/-'(T/XS_BC_T)"{’\J

J

..E_L'o@

(o CEC1 Y, (A2

B (x,y) is the Euler beta function, s the asymptotic variable of
interest and x denotes collectively those variables which are kept fixed.
We observe from Eq. (A.2) when -s — o, we have the asymptotic

result:
v —E e
, . ~ T
bove V (s, D~ == ng VT,x) (=8) (-1,

~S_;ao

(A2
and thus the burden of finding the asymptotic result rest on the
singularity structure in the T variable of V.

For the purposes of finding the asymptotic limit of a Feynman

graph, it proves useful to make use of the Nambu-Schwinger representation
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of the graph, and the following integral reprentatation of the Beta-

function:

s e . y =1
BOogY = fav &7 lime)

o]

14

(A.4)
We consider the Feynman amplitude, MB, for the box diagram andfor

sir_nplic_it}; have set the external masses to zero, (see Fig. 5. ):

~ ( g /i -t /
M& \ Hldﬁ_ C LY.F D /¢ )
© (AT
where D énd C are definéd by the equafions:
B= oAy ofy S + o oy T —gz——’ °“"“L]C
L=}
(A be

Using Eq. (A.41) we have:
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r?)'f{"a

L

: , 7
PN Jo‘-s Sdc? WP*ﬁ'('F’ 1ca(q) WF_Y"{('I—f_r?‘t(’f
¢ ! o

-'n -"m

We evaluate the integral:

~TMtieo )
‘ /A
T ds 2vp-s (o~ o, oy ) ' (Ars )
. C
-rh_;w

by means of a Wick-like rotation, i.e., we define:

S = +{ g} , and obtain,
{n +oe
S Sdist p-dsl (duoty - Y = S ol oo oy )
27T c C
1'71-‘9 |

(A=)

The r integration in Eq. (A.7) now becomes trivial and we have:
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, T
o ) (- Ll —-T s vy e—d&o(u,
My \ ey ¢ () e g (D¢ 7C
"z
o ’ &2 oy
, C
s - e i
X arp oyt = C [T dieml | %
(. -
c \
(e )
We see from Eq. (A.10) the leading = singularity is a double pole at:
T = - | (A0
when a, and a, - 0.
~t
Anti-transforming, MB ,by means of Eq. (A.2)and picking up the residue
of the double pole,we obtain the leading asymptotic term:
<3
| ~ o . d‘*td"(s C AP [419(3"‘-' -C ‘-“\"“b‘*?‘jfi?’ls
- —ye o - - E /
(60
where C is given by,
- DN
[\ = o(\ + JS ’ ( A= )

This is, of course, a cumbersome method--to say the very

least--to obtain the result depicted in Eq. (A.12). We believe its utility is

bourne out when there are several asymptotic variables to be dealt with.
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Thus we define the multiple transform [ 9 ] and make use of it in

Section III. To wit: for n asymptotic variables Si' .. Sn the multiple

transform is defined by: S, tiee TN O

~ C "o
\/(-E()'Ez.l,"r) M, \/-X\B - d’ﬂ"l‘ g WASL

i=1
— ..['Q_ ,‘-O
’n'f\ 'n\ t

N Lsy, Sa,omensm s XY 0 T BT, s:+\)

L=
(oc m <1, i=ym ), (i, 14 )

and the anti-transform is defined by:

- E AL B - & e
’ "
/ : S . o M dt,:
\/CSHSH»M»SMJX)-;;‘S' &L-.,
| -Eﬂt—{w\ —E!— =
~ A
X \/(ti)tz.) - T ')X\} W -% (—T"}~SL,3

) m;;)

where again X denotes collectively the variables which are to be held
fixed. Care must be taken when one uses (A.15) where kinematic

constraints require ratios of asymptotic variables to approach a limit
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is to be taken, one first takes the discontinuity and thenimposes the kinematic
constraint. For the purpose of this paper, this word of caution really
never arises,but it has been noted [28] that for the two-particle distribution

such subltiess do indeed appear.
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FOOTNOTES

' 1 . BT [ -
We believe our calculationneed not be restricted to the ladder graphs of

¢3theo'ry, i.e, 'tﬁe”éfsérgn’tiélﬂréquirrérﬂeihtrs arethatthe black|boxes be
Regge behaved ‘énd the speétral functions satisfy a well define set of
superconvergence conditions.

12 We ise the term helicity pole limit to mean: s - o, M2 - ©,

—-S—Z- ~ o, and t - fixed. This is not to be confused with the quite
g/ilfferent triple Regge limit in which a non-forward 6-point amplitude,
has six channel variables taken to infinity. For an interesting
discussion concerning the relation of these two limits see, C. E. DeTar
and J. H. Weis, to be published in Phys. Rev.

We have choosen a particularly manageable subset of non-planer
graphs. There are certainly more involved non-planar graphs such

as those containing cuts in 25 Mandelstam channels (the maximal
number ) for the non-forward amplitude. We have no idea what new
features might or might not emerge upon considering such complex
graphs.

4 As discussed in Ref. [4], continuation below -1 in o and o
is prohibited since we would obtain contributions from the non-leading
pieces (the Regge-daughters) in the Regge black boxes.

See the last paragraph of Section III. Strictly speaking at t=0, we

should retain some external masses for otherwise there swould be no -

2
separation of the left and right M hand cuts at t =0.
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6We have not included in the D function,the two particle,
-(p - p” )2, channel, nor any three particle channel which

yields a vanishing contribution to the elastic limit.

7We thank S. D. Ellis and. S. B.Treiman for discussions concerning

the transition from the Feynman to the Nambu-Schwinger
representation. See also R. J. Eden et al., p. 152 of Ref. [1].

The actual representation we make use of is analogous to the

Laplace as opposed to Fourier version of the amplitude,

8An evalution of the 2y~ 0 contribution, whichis a bit more subtle ,leads
directly to an M independent result, i.e.,the amplitude,_g/,
behaves like sav in the elastic limit. A very similar phenomena
occurs for the planar graph considered in Ref. [4].

These symmetries can be seen quite easily by inspecting the

graph depictedin Fig. 3, with however,the lines x_ and Yy contracted.

3

10
We thank A. Sanda for several discussions concerning the separation

of left and right hand M2 cuts. We refer the reader to an interest-
ing discussion by A. Sanda, NAL preprint, THY-25 (1971), onthe
analyticity properties of the 6-point amplitude, which relates to
the helicity pole limit.

“It is amusing to note that the vanishing of the discontinuity across
the tip of the cut in the Nambu-Schwinger parameter space is some-
what analogous in many respects to the well known tip of the cut

theorem of J. B. Bronzan and C. E. Jones, Phys. Rev. 160,
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41494 (1967), where, of course, at issue their was the analytic
structure of an isolated J-plane cut.

2
! The symmetry in § follows from our discussion of the symmetry:

Gy =G M),

13 Retaining non-leading terms here appears inconsistent with our
assumption that the Regge boxes are govern by the leading Regge
singularity, (see footnote 4).

14Al’chough the results quoted are not explicity stated in the sum rules
(identical to those of Ref. 44)of T. T. Chou and C. N. Yang,

Phys. Rev. Letters 25, 1072 (1970) we believe they must be implicity
present. We further remark that a general formulation of the inclusive
sum rules has been recently given by E. Predazzi and G. Veneziano
CERN preprint TH. 1378 (1971), see also S. -H. H. Tye MIT pre-
print, CPT 239 (1971).

15The fact that this result arises in our opinion is truly amazing due
to the quite different combinatorial aspects of the dual perturbation
expansion and the Feynman-Dyson expansion.

16 The position of the pomeron intercept is in fact, dual model dependent,
i.e. different dual-factorizable, and possibly ghost free models yield
different results. For a detailed discussion of the pomeron of the

dual model and it's relation to the Freund-Harari conjecture we refer

the interested reader to, G. Veneziano, invited talk at the International
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Conference on Duality and Symmetry in Hadron Physics, Tel-Aviv,
Israel, 1971, (proceedings to be published).
17Pr'esumably t-channel unitarity should provide some information
on this question.
18When we refer to ladders, we do not include ladder graphs in which
e.g. 2 or more ladders are wielded together at their sides and with
their rungs alternating.
19X in fact, includes a bit more than the spectral function, indeed, we
also include the computable cut structure that emerges at the junction
of the three Regge black boxes.
2.OSee I. T. Drummond, P. V. Landshoff and W. J. Zakrzewski,
Nucl. Phys. B14, 383, (1969), Eq. (3.13) for an example of the
convoluted form.
One can indeed, argue that the product of a known function times an
unknown function, whose onlyproperties we make use of are its super -
convergence behavior,could yield anything one desires. We are,
of course, assuming that the spectral fur;ctions are not so perverse
as to cancel the effects generated from the known functions. If
one believed in such a happenstance then one can ignore Ref, [4]
and the conclusions of this paper.

We note here the significant new development in dual loop theory [26]

by V. Alessandrini, D. Amati, and B. Morel, CERN preprint TH 1406
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(1971), in which the asymptotic limits of the orientable non-planar
box diagrams has been rigorously calculated and found to be convergent
in the right half complex s-plane. Thus we feel an asymptotic evalu-
ation of e. g. the graphs discussed in Ref. [25], and a test of our

second conjecture should be possible in the near future.
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FIGURE CAPTIONS

The planar three Reggeon Graph.

The non-planar three Reggeon Graph, for the model
calculation considered here. (Note that the obvious
presents of the left and right hand M2 singularities. )
The reduced equivalent non-planar three Reggeon Graph.
A non-planar dual amplitude. (See Section V of text.)

The q53 box diagram. (See Appendix)



o

S
AR

Figure |



2 ainbi4




¢ a.nbi4

%4 2 A -
' Js | Iy
NN&_V_IV_
d—>— ¢
é X
arAER €z49-M1-% y'd+y-
g—<t—
_N»__a..m_a +2d- 1d+y-y
_Q & 2 K _V Na

-
|

d-Sd + Zd—d+y-



Figure 4



P, |
Q.
t—1a, a,
Q3
S

Figure 5



